https://brown-csci1l660.github.io

CS1660: Intro to Computer Systems Security
Spring 2026

Lecture 8: Public-key Cryptography

Instructor: Nikos Triandopoulos
February 19, 2026

A7
N

0

BROWN

https://brown-csci1660.github.io/
https://brown-csci1660.github.io/
https://brown-csci1660.github.io/

CS1660: Announcements

¢ Course updates
¢ Project 1 “Cryptography” is due today
¢ HW 1 is due next Thursday (Feb 26)

L ast class

¢ Cryptography
o Integrity & reliable communication
¢ Message authentication codes (MACs)

¢ Authenticated encryption, side-channel attacks

¢ Cryptographic hash functions, cryptographic hashing in practice & applications

¢ Authentication

¢ User authentication: something you know, are, have

& Password security and cracking, more on password cracking

¢ The Merkle tree

Today

¢ Cryptography
¢ Introduction to modern cryptography

¢ Secure communication & symmetric-key encryption in practice

o Integrity & reliable communication

o Public-key encryption & digital signatures Public-key crypto

¢ Motivation, key management, hybrid encryption, implementation, assumptions
+ Authentication

¢ User authentication: something you know, are, have
¢ Password security and cracking, more on password cracking

¢ The Merkle tree

8.1 Public-key encryption
& digital signatures

Recall: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs

For symmetric-key message encryption/authentication

¢ adversary

¢ types of attacks @

o trusted set-up Alice m—»

¢ secret key is distributed securely |

+ secret key remains secret
ftrust basis @

Alice m—»

.
* B
encrypt—> ¢ —— c—>
< o
!)
“Sign” —> M, t ————— 1, '—

¢ underlying primitives are secure
¢ PRG, PRF, hashing, ...
e e.g., block ciphers, AES, etc.

On “secret key is distributed securely”

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

> 1. strong assumption to accept

¢ “securely obtain”

¢ need of a secure channel

¢ “shared secret key” — > 2.challenging problem to manage

¢ too many keys

On “secret key is distributed securely”

Alice & Bob (or 2 individuals) must securely obtain a shared secret key

» 1. strong assumption to accept

¢ “securely obtain”

¢ requires secure channel for key distribution (chicken & egg situation)

¢ seems impossible for two parties having no prior trust relationship

¢ not easily justifiable to hold a priori

> 2.challenging problem to manage

¢ “shared secret key”

¢ requires too many keys, namely O(n?2) keys for n parties to communicate

¢ imposes too much risk to protect all such secret keys

+ entails additional complexities in dynamic settings (e.g., user revocation)

8

Alternative approaches?

Need to securely distribute, protect & manage many session-specific secret keys
¢ 1. For secure distribution, just make another (more reasonable) assumption...
¢ employ “designated” secure channels

¢ physically protected channel, e.g., meet in a “sound-proof” room

¢ employ “trusted” party

¢ entities authorized to distribute keys, e.g., key distribution centers (KDCs)

¢ 2. For secure management, just live with it!

A % > Public-key cryptography to the rescue...

disclaimer on names
private = secret

Public-key (or asymmetric) cryptography

Goal: devise a cryptosystem where key setup is more manageable

Main idea: user-specific keys (that come in pairs)
¢ user U generates two correlated keys (U, Ug)

o U is public — it can safely be known by everyone (even by the adversary)
¢ U, is private — it must remain secret (even from other users)
Usage
¢ employ public key Uy for certain “public” tasks (run by other users)
¢ employ private key U, for certain “sensitive/critical” tasks (run by user U)

New assumption

¢ public-key infrastructure (PKI): public keys become securely available to users
10

From symmetric to asymmetric encryption

secret-key encryption
H
main limitation k w k
* in limitati @ . S . @

+ session-specific keys Alice m—>encrypt—> ¢ > c—

public-key encryption

+ main flexibility Bobpy “@, Bobg ¢
v . v [|

¢ user-specific keys Siice S eREREL - ¢ o35 c—sdecrypt—> m Bob

“sensitive” task

¢ messages encrypted by receiver’s PK can (only) be decrypted by receiver’s SK

11

From symmetric to asymmetric message authentication

secret-key message authentication (or MAC)

k
v

£

k
v

rej

¢ main limitation @

¢ session-specific keys Alice m—»

llsign"

> M, t —— m), t

— verify

J

—> Bob

/

public-key message authentication (or digital signatures)

acc

¢ main flexibility Q Aliceg,
¢ user-specific keys '

Alice m—>

sign

—p m’cﬁm'oﬁ

verify —

\@, . AIliEpK ‘Lm

/ Bob

“critical” task
¢ (only) messages signed by sender’s SK can be verified by sender’s PK

12

acc

Thus: Principles of modern cryptography

(A) security definitions, (B) precise assumptions, (C) formal proofs

For asymmetric-key message encryption/authentication

¢ adversary

¢ types of attacks @

o trusted set-up Alice m—»

¢ PKlis needed

¢ trust basis

Bobpy m Bobgy
v ¢
encrypt— ¢ — >» c—>decrypt—> m Bob
A“CEPK -

v

¢ secret keys remain secret @ Alicesy “@,

Alice m—»

llsign"

—> M, t ——3 m, t— verify

¢ underlying primitives are secure
¢ algebraic computationally-hard problems

¢ e.g., discrete log, factoring, etc. -~

acc

General comparison

Symmetric crypto

¢ key management
¢ less scalable & riskier
¢ assumptions
o secret & authentic communication
& secure storage
¢ primitives
¢ generic assumptions

o more efficient in practice

Asymmetric crypto

¢ key management
¢ more scalable & simpler
¢ assumptions
¢ authenticity (PKI)
secure storage
& primitives
¢ math assumptions
o less efficient in practice (2-3 0.0.m.)

14

Public-key infrastructure (PKiI)

A system for securely managing, in a dynamic multi-user setting,
user-specific public-key pairs (to be used by some public-key cryptosystem)

¢ dynamic, multi-user

¢ the system is open to anyone; users can join & leave
¢ user-specific public-key pairs

+ each user U in the system is currently assigned a unique key pair (Upy, Ug)
¢ secure management

+ public keys are authenticated: correct current Uy, of user U is known to everyone

Very challenging to realize
¢ currently using digital certificates; ongoing research towards a better approach...

15

Overall: Public-key encryption & signatures

Assume a trusted set-up

¢ public keys are securely available (PKI) & secret keys remain secret
Bsk

B«
' '

Alice m—|encrypt— ¢ - > c—decrypt— m Bob

Q&

Alice m—

16 acc

Public-key cryptography: Early history

Proposed by Diffie & Hellman
¢ documented in “New Directions in Cryptography” (1976)
¢ solution concepts of public-key encryption schemes & digital signatures

¢ key-distribution systems
¢ Diffie-Hellman key-agreement protocol
¢ “reduces” symmetric crypto to asymmetric crypto
Public-key encryption was earlier (and independently) proposed by James Ellis

+ classified paper (1970)

¢ published by the British Governmental Communications Headquarters (1997)

¢ concept of digital signature is still originally due to Diffie & Hellman

18

19

8.2 Public-key certificates

How to set up a PKI?

¢ How are public keys stored? How to obtain a user’s public key?
¢ How does Bob know or ‘trust’ that A, is Alice’s public key?

¢ How A, (a bit-string) is securely bound to an entity (user/identity)?

public key: Ap¢
secret key: A

public key: By
secret key: Bey

20

Problem statement A PKI entails binding
user identities to public keys

How can we maintain the invariant that

¢ any given user U is assigned a unique public-private key pair; and

¢ any other user may learn U’s current public key?

¢ secret keys can be lost, stolen or they should be revoked
Recall
¢ PK cryptosystems come with a Gen algorithm which is run by U

¢ on input a security-strength parameter, it outputs a random valid key pair for U
¢ Public keys can be made publicly available

¢ e.g, sent by email, published on web page, added into a public directory, etc.

2

Distribution of public keys

Public announcement
¢ Users distribute public keys to recipients or broadcast to community at large
Publicly available directory

¢ Users register public keys to a public directory

Both approaches have problems and are vulnerable to forgeries

22

Do you trust a public key? A PKI entails binding
user identities to public keys

One is what their public key “claims to be”

¢ Impostor wants to claim to be a true party
¢ true party has a public and private key

¢ impostor also has a public and private key

¢ Impostor manages to send impostor’s own public key to the sender/verifier

¢ claims, “This is the true party’s public key”
¢ critical step in the deception

& succeeds in decrypting/forging a message as received/signer

23

Certificates: Trustable identities & public keys

Certificate
¢ a public key & an identity bound together

¢ in a document signed by a certificate authority
Certificate authority (CA)

¢ an authority that users trust to securely bind identities to public keys
¢ CA verifies identities before generating certificates for these identities
¢ E.g., domain, organization or extended validation
¢ secure binding via digital signatures

¢ ASSUMPTION: The authority’s PK CApg is authentic

24

Public-key certificates in practice

Current (imperfect) practice for achieving trustable identities & public keys
¢ everybody trusts a Certificate Authority (CA)
¢ everybody knows CAp¢ & trusts that CA knows/protects corresponding secret key CAg
a certificate binds identities to public keys in a CA-signed statement
¢ e.g., Alice obtains a signature on the statement “Alice’s public key is 1032xD”
o users query CA for public keys of intended recipients or signers
¢ e.g.,, when Bob wants to send an encrypted message to Alice
¢ he first obtains & verifies a certificate of Alice’s public key
¢ e.g., when Alice wants to verify the latest software update by Company

she first obtains & verifies a certificate of Company’s public key

25

Example

Mario Rossi's
Certificate

Document containing the
public key and identity for
Mario Rossi
C Certlflcate IS a pUbIIC Certificate Authority's
e : Nz : Mari ivate k
key and an Identlty Sdme .tlrl() - private Key
urname: Rossi

bound together and Address: --- St.
Signed by a Certificate

authority (CA) &-

Name: Mario
Surname: Rossi
Address: --- St.

-3 2 Szl RS FNARTAETFE NN & 2 A

G

Mario Rossi's

Mario Rossi's public key
public key
Signature of the Certificate
Authority

T ————

a certificate authority is an authority
that users trust to accurately verify
identities before generating certificates

that bind those identities to keys ‘/SymanteCm

26

Certificate hierarchy

Single CA certifying every public key is impractical
Instead, use trusted root certificate authorities

¢ root CA signs certificates for intermediate CAs,
they sign certificates for lower-level CAs, etc.

¢ certificate “chain of trust”

* SignSK_Symantec (”BFOWH", I:)KBrown)
* SignSK_Brown (”faculty”, PKfaculty)

® SigNsk faculty (“Nikos”, PKyios)

27

To create Diana’s certificate:
Diana creates and delivers to Edward:

Name: Diana
Position: Division Manager
Public key: 17EFS83CA ...

Edward adds:

Name: Diana
Position: Division Manager
Public key: 17EFS83CA ...

hash value
128C4

Edward signs with his private key:

Name: Diana
Position: Division Manager
Public key: 17EF83CA ...

hash value
128C4

Which is Diana’s certificate.

Example 1: Certificate signing & hierarchy

To create Delwyn’s certificate:

Delwyn creates and delivers to Diana:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

Diana adds:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

Diana signs with her private key:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

And appends her certificate:

Name: Delwyn
Position: Dept Manager
Public key: 3AB3882C ...

hash value
48CFA

Name: Diana
Position: Division Manager
Public key: 17EF83CA ...

hash value
128C4

Which is Delwyn’s certificate.

28

Example 2

Symantec

RISD staff
V\
O
O =
®» 0 ® @ ® @&

o

O O G

/

users

_, Brown

- F Faculty
/ Nikos

What bad things can happen if the root CA system is compromised?

29

Secure communication over the Internet

https://

< C A |8 Bank of America Corporation Qe ——————————————————
i Apps M Absolute Radic - Int.. €1 MEGA TV [New Tab
Personal Small Business Wealth Management Businesses & Institutions S
- ,,}
Bankof America — Locations | ContactUs | Help { En espafiol
Enter your Online ID
83 Protect Lez

— il s et

M save this Online D
» Help/options

App. Snap. Deposit.

Deposit checks right away using the camera on your
moblle deV|Ce—r|ght f:rom the MC App. Snap. Deposit. Deposit checks right away using the

camera on your mobile device-right from the Mobile

Banking App. Learn more
Learn more

What cryptographic keys are used to protect communication?

30

X.509 certificates

Defines framework for authentication services

¢ defines that public keys stored as certificates in a public directory
¢ certificates are issued and signed by a CA

Used by numerous applications: SSL

Example: see certificates accepted by your browser

31

32

8.3 Hybrid encryption

Secret-key cryptography is “reduced” to public-key

PK encryption can be used “on-the-fly” to securely distribute session keys

Main idea: Leverage PK encryption to securely distribute session keys
¢ sender generates a fresh session-specific secret key k and learns receiver’s public key R
+ session key k is sent to receiver encrypted under key Ry

¢ session key k is employed to run symmetric-key crypto

¢ e.g., how notto run
above protocol

@ | Bill, give me your public key >
< Here is my key, Amy | @
@ | Here is a symmetric key we can us>

33

Hybrid encryption

“Reduces” secret-key crypto to public-key crypto

¢ better performance than block-based public-key CPA-encryption
¢ mainidea

¢ apply PK encryption on random key k k

¢ use k for secret-key encryption of m

34

Hybrid encryption using the KEM/DEM approach

“Reduces” secret-key crypto to public-key crypto

¢ mainidea o

¢ encapsulate secret key k into ¢ l

¢ use k for secret-key encryption of m pk—{>Encaps k > Enc’

¢ KEM: key-encapsulation mechanism - Encaps

¢ DEM: data encapsulation mechanism - Enc’ \ \

¢ o4
¢ KEM/DEM scheme

¢ CPA-secure if KEM is CPA-secure and Enc’ EAV-secure

¢ CCA-secure if KEM and Enc’ are CCA-secure

35

e 2 oo

S o S o e e e
= s s e e = -
e e e

= — e e e
:] : s : e
o
2 R e
P e =

- = (u ry |

: = - .
& e > e
e = e e == —

3&.
=

Multiplicative inverses

The residues modulo a positive integer n comprise set Z,={0,1,2,...,n - 1}
¢ letxandy be two elements in Z,such thatxymodn=1
¢ we say: y is the multiplicative inverse of x in Z,

¢ we write:y=x!

Theorem

An element x in Z, has a multiplicative inverse iff x, n are relatively prime

37

Multiplicative inverses (cont.)

¢ e.g., multiplicative inverses of the residues modulo 10 are 1, 3, 7, 9

X 0 1 2 3 4 5 6 7 8
x1 1 7 3

¢ e.g., multiplicative inverses of the residues modulo 11 are all non-zero elements

X 0 1 2 3 4 5 6 7 8 9 10

xt 1 6 4 3 9 2 8 7 5 10

38

Computing multiplicative inverses

Fact
¢ given two numbers a and b, there exist integers x, y s.t.
xa+yb=gcd(a,b)

which can be computed efficiently by the extended Euclidean algorithm.

Thus

¢ the multiplicative inverse of a in Z,, exists iff gcd(a, b) = 1
¢ i.e, iff the extended Euclidean algorithm computes xandys.t.xa+yb=1

+ in this case, the multiplicative inverse of a in Z, is x

39

Euclidean GCD algorithm

Computes the greater common divisor
by repeatedly applying the formula
gcd(a, b) = gcd(b, a mod b)

¢ example

¢ gcd(412, 260) =4

Algorithm EuclidGCD(a, b)
Input integersaand b
Output gcd(a, b)

ifb=0
return a

else
return EuclidGCD(b, a mod b)

412

260

152

108

44

20

260

152

108

44

20

40

Extended Euclidean algorithm

Theorem
If, given positive integers a and b,
d is the smallest positive integer Algorithm Extended-Euclid(a, b)
s.t. d =ia + jb, for some integers Input integersaand b
iand j, then d = gcd(a, b) Output gcd(a, b), i and j
s.t. ia+jb = gcd(a,b)
ifb=0
¥ tauce return (a,1,0)
¢ a=21,b=15 (d’, %', y') = Extended-Euclid(b, a mod b)
e d=3,i=3,j=-4 (d, x,y)=(d', ¥y, x' - [a/bly’)
s - A6 50 return (d, x, y)

41

Multiplicative group

A set of elements where multiplication ¢ is defined
¢ closure, associativity, identity & inverses
& multiplicative groups Z*,,, defined w.r.t. Z, (residues modulo n)
¢ subsets of Z,, containing all integers that are relative prime to n

¢ CASE 1:if nis a prime number, then all non-zero elements in Z, have an inverse
¢ 7,={1,2,3,45,6},n=7
¢ 2°4=1(mod7),3*5=1(mod7),6*6=1(mod7),1*1=1(mod 7)
¢ CASE 2: if nis not prime, then not all integers in Z, have an inverse
e 2°x={1,3,79},n=10
¢ 3*7=1(mod 10),9°9=1(mod 10),1*1=1 (mod 10)

42

Order of a multiplicative group

Order of a group = cardinality of the group
¢ multiplicative groups for Z*,,
+ the totient function ¢(n) denotes the order of 7%, , i.e., d(n) = | Z", |
¢ if n=pis prime, then the order of Z°,={1,2,...,p-1} is p-1, i.e., $(n) = p-1
e eg,2,={1,234,5,6},n=7,0(7)=6
¢ if nis not prime, d(n) = n(1-1/p1)(1-1/p,)...(1-1/p), where n = pl;pe2,...pek,
e eg,21,={1,3,79}, n=10, $(10) = 4

e ifn=pqg, where p and q are distinct primes, then ¢(n) = (p-1)(g-1) Factoring problem
o difficult problem: given n = pq, where p, g are primes, find p and q or ¢(n)

43

Fermat’s Little Theorem

Theorem

If p is a prime, then for each nonzero residue x in Z,, we have x> mod p =1

¢ example (p=5):

1“mod5=1 2°mod5=16mod5=1
3*mod5=81mod5=1 4*mod5=256 mod5=1
Corollary

If p is a prime, then the multiplicative inverse of each xin Z*, is x"~2mod p

¢ proof: x(xP"2modp) modp=xxP"?2modp=x""modp=1

44

Euler’s Theorem

Theorem

For each element xin Z*,, we have x*™ mod n=1

¢ example (n = 10)
o 7°,=1{1,3,7,9}, n=10, $(10) = 4
o 3%19mod10=3*mod 10=81 mod 10=1
¢ 7419 mod 10 =7 mod 10 = 2401 mod 10 =1
e 9919 mod 10 =9* mod 10 = 6561 mod 10 =1

45

Computing in the exponent

For the multiplicative group Z*,,, we can reduce the exponent modulo ¢(n)

e xYmod n =xkeM+rmod n = (x®M)kxr mod n = x" mod n = x YM2d (N mod n

Corollary: For Z*,,, we can reduce the exponent modulo p-1

¢ example
e Z* ={1,3,7,9}, n =10, $(10) = 4
e 310 mod 10 = 31590mod4 mpd 10 = 32 mod 10 =9
¢ example
o Z*,={1,2,.,.p-1}, p=19, $(19) = 18
e 153 mod 19 =153°md18 mod 19 = 153 mod 19 = 12

46

Modular powers

Repeated squaring algorithm

Speeds up computation of aP mod n

o write the exponent p in binary
P=Pb-1Pp-2 - P1Po
¢ start with Q; =aPb-1 mod n

+ repeatedly compute
Q; = ((Q;-1)* mod n)aPb-i mod n

¢ obtain Q,=aP mod n

Total O (log p) arithmetic operations

47

Example

¢ 3 mod 19 (18 = 10010)
¢ Q;=3'mod19=3
e Q,=(32mod 19)3°mod 19=9
¢ Q;=(92mod 19)3° mod 19 = 81 mod 19
5
¢ Q,=(52mod 19)3* mod 19 =
(25 mod 19)3 mod 19 =18 mod 19 =18

¢ Q:=(182mod 19)3° mod 19 = (324 mod
19) mod 19=17-19+1mod 19=1

Powers

Let p be a prime

¢ the sequences of successive powers of the elements in Z°, exhibit repeating
subsequences

¢ the sizes of the repeating subsequences and the number of their
repetitions are the divisors of p—1

¢ example,p=7 x x2 X3

x4
|
2
4
4
2
1

48

49

8.5 The Discrete Log
problem & its
applications

The discrete logarithm problem

Setting
+ if pbe an odd prime, then G = (Z,7, -) is a cyclic group of order p—1
e 7, =11, 2,3, .., p-1}, generated by some g in Z,*
e fori=0,1, 2, ..., p-2, the process g'mod p produces all elements in Z,°
+ for any x in the group , we have that gt mod p = x, for some integer k
¢ kis called the discrete logarithm (or log) of x (mod p)
Example
e (Z477,) is acyclic group G with order 16, 3 is the generator of G and 316=1 mod 17
¢ letk=4,3%=13 mod 17 (which is easy to compute)

¢ theinverse problem: if 3k= 13 mod 17, what is k? what about large p?

50

Computational assumption

Discrete-log setting

¢ cyclicG =(Z,’, -) of order p — 1 generated by g, prime p of length t (|p|=t)
Problem

+ given G, g, pandxin Z,’, compute the discrete log k of x (mod p)

¢ we know that x = gk mod p for some unique k in {0, 1, ..., p-2}... but

Discrete log assumption

& for groups of specific structure, solving the discrete log problem is infeasible
« any efficient algorithm finds discrete logs negligibly often (prob = 2-¥2)

Brute force attack

o cleverly enumerate and check O(2%2) solutions
51

ElGamal encryption

Assumes discrete-log setting (cyclic G = (2", -) = <g>, prime p, message space Z,)
Gen

¢ secret key: random number x € Z°, public key: A = g*mod p, alongw/ G, g, p
Enc
¢ pickafreshrandomr € Z",and setR= A" (=g*")

¢ send ciphertext Encpk(m) = (c4, C5) wherec; =g, ¢;=m:Rmodp
Dec
¢ Decglcy,Cp) = ¢ (1/c1X) mod p where ¢;*= g

Security is based on Computational Diffie-Hellman (CDH) assumption
e given (g, g3,g°) it is hard to compute gab

A signature scheme can be also derived based on above discussion

52

Application: Key-agreement (KA) scheme

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line
¢ instead of meeting in person in a secret place, they want to use the insecure line...

¢ KA scheme: they run a key-agreement protocol I1 to contribute to a shared key K
¢ correctness: Ky = Kg

& security: no PPT adversary A, given T, can distinguish K from a trully random one

Alice Bob

- @7
input 1"

output Ku 4 =
transcript T of exchanged messages
53

\ 4

i, S B

Key agreement: Game-based security definition

scheme M(1") runs to generate K = K, = Kz and transcript T; random bit b is chosen
adversary Ais given T and k,; if b = 1, then k, = K, else k, is random (both n-bit long)
A outputs bit b’ and wins if b’ = b

then: M is secure if no PPT A wins non-negligibly often

(A) Alice (D) output b’ (E) Awinsiffb’ =b

A
input 1" “@' (C)T, ke input 1"

[
>

output Ku 4 =
transcript T of exchanged messages

(B) b is randomly chosen 54

The Diffie-Hellman key-agreement protocol

Alice and Bob want to securely establish a shared key for secure chatting over an insecure line
¢ DH KA scheme

+ discrete log setting: p, g public, where <g>= 7", and p prime

Alice

input 1" -

(1) randomly pick secret a (3) send g2 mod p : (2) randomly pick secret b

<
<

(4) send g° mod p
(5) set K = g2 mod p = (gP mod p)2 mod p (6) set K = g2 mod p = (g2 mod p)? mod p

55

Security

o discrete log assumption is necessary but not sufficient

+ decisional DH assumption

¢ given g, g2 and gb, g?® is computationally indistinguishable from uniform

56

Authenticated Diffie-Hellman

s b MITM attacker = oib

- gc mod p “@g g° mod p
) /

Alice computes g2 mod p and Bob computes g°° mod p !!!

Calices 82 mod p, Signajice(g2 mod p) o

Caob, 8° Mod p, Signgep(g° mod p)

A

57

58

8.6 The RSA algorithm

The RSA algorithm (for encryption)

General case Example
Setup (run by a given user) Setup
¢ n=p-q,with pand g primes ¢ p=7,q=17,n=7-17=119
¢ erelatively primetod(n)=(p-1)(q-1) ¢ e=5¢d(n)=6-16=96
¢ dinverse of ein Zy, e d=77
Keys Keys
¢ public key is Kpk = (n, e) ¢ publickeyis (119, 5)
¢ private keyis K =d ¢ private key is 77
Encryption Encryption
¢ C=Me®mod n for plaintext M in Z, ¢ C=199mod119=66forM=19in Z;;9
Decryption Decryption

¢ M=Cimodn ¢ M=66'""mod119=19

59

Another complete example

¢ Setup ¢ Encryption
ep=5q9q=11,n=5-11=55 ¢ C=M:3mod 55 for M in Zs
ed(n)=4-10=40 ¢ Decryption

ee=3,d=27 (3:27=81=240+1) ¢ M=C? mod 55

7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

60

Correctness of RSA

Given Analysis
Setup Need to show
¢ n=p-q, with pand g primes e Me¢=Mmodp-q
¢ e relatively primeto d(n)=(p-1)(q-1) Use (1) and apply (2) for prime p
¢ dinverse of ein Zy, (1) e Med=Med-1M = (MP-1)hia-l) M
Encryption ¢ Med=1ha1) M mod p=Mmod p
¢ C=Me®emod n for plaintext M in Z, Similarly (w.r.t. prime q)
Decryption ¢ Med=Mmodq
¢ M=C'modn Thus, since p, g are co-primes
Fermat’s Little Theorem (2) e M9=Mmodp-:q

¢ for prime p, non-zerox: x> modp =1

61

A useful symmetry

[1] RSA setting
¢ modulon=p-q, p & qare primes, public & private keys (e,d): d - e =1 mod (p-1)(g-1)

[2] RSA operations involve exponentiations, thus they are interchangeable

e C = M® modn (encryption of plaintext M in Z,,)
e M = €4 modn (decryption of ciphertext Cin Z,)
Indeed, their order of execution does not matter: (Me)d = (M9) e mod n

[3] RSA operations involve exponents that “cancel out”, thus they are complementary

o xPUal)modn=1 (Euler’s Theorem)

Indeed, they invert each other: (Me¢)d =(Md)e =Med = MklP-1)a-1)+l mod n
=(M(-lal)k.M =1k.M =Mmodn

62

Sighing with RSA

RSA functions are complementary & interchangeable w.r.t. order of execution

¢ core property: M®d = M mod p - g for any message Min Z,

RSA cryptosystem lends itself to a signature scheme

¢ ‘reverse’ use of keys is possible : (M9) =M mod p - q
¢ signing algorithm Sign(M,d,n): 6 = M9 mod n for message M in Z,

+ verifying algorithm Vrfy(o,M,e,n): return M == ¢® mod n

63

The RSA algorithm (for signing)

General case Example
Setup (run by a given user) Setup
¢ n=p-q,with pand g primes ¢ p=7,q=17,n=7-17=119
¢ erelatively primetod(n)=(p-1)(q-1) ¢ e=5¢d(n)=6-16=96
¢ dinverse of ein Zy, e d=77
Keys (same as in encryption) Keys
¢ public key is Kpk = (n, e) ¢ publickeyis (119, 5)
¢ private keyis K =d ¢ private key is 77
Sign Signing
¢ o =M9mod n for message M in Z, ¢ 0=66""mod119=19for M =66 inZ;;
Verify Verification

¢ CheckifM=0°modn ¢ CheckifM=19>mod 119 =66

64

Digital sighatures & hashing

Very often digital signatures are used with hash functions
¢ the hash of a message is signed, instead of the message itself

Signing message M

+ let h be a cryptographic hash function, assume RSA setting (n, d, e)
¢ compute signature o on message M as: 6 = h(M)4 mod n
¢ sendo, M

Verifying signature o
¢ use public key (e, n) to compute (candidate) hash value H = 6® mod n
¢ if H=h(M) output ACCEPT, else output REJECT

65

Security of RSA

Based on difficulty of factoring large numbers (into large primes),i.e., n=p-qintop, g
¢ note that for RSA to be secure, both p and g must be large primes
¢ widely believed to hold true
¢ since 1978, subject of extensive cryptanalysis without any serious flaws found
¢ best known algorithm takes exponential time in security parameter (key length |n|)
¢ how can you break RSA if you can factor?

Current practice is using 2,048-bit long RSA keys (617 decimal digits)

¢ estimated computing/memory resources needed I THH NS PCs Memory
to factor an RSA number within one year
430 1 128MB
760 215,000 4GB
1,020 342x106 170GB
— 1,620 1.6x10%° 120TB

RSA challenges

Challenges for breaking the RSA cryptosystem of various key lengths (i.e., |n])
¢ known in the form RSA-key bit length’ expressed in bits or decimal digits
& provide empirical evidence/confidence on strength of specific RSA instantiations
Known attacks
¢ RSA-155 (512-bit) factored in 4 mo. using 35.7 CPU-years or 8000 Mips-years (1999) and 292 machines

¢ 160 175-400MHz SGI/Sun, 8 250MHz SGI/Origin, 120 300-450MHz Pent. ll, 4 500MHz Digital/Compagq
¢ RSA-640 factored in 5 mo. using 30 2.2GHz CPU-years (2005)

¢ RSA-220 (729-bit) factored in 5 mo. using 30 2.2GHz CPU-years (2005)
¢ RSA-232 (768-bit) factored in 2 years using parallel computers 2K CPU-years (1-core 2.2GHz AMD Opteron) (2009)

Most interesting challenges
+ prizes for factoring RSA-1024, RSA-2048 is S100K, S200K — estimated at 800K, 20B Mips-centuries

67

Deriving an RSA key pair

public key is pair of integers (e,n), secret key is (d, n) or d
+ the value of n should be quite large, a product of two large primes, p and g
¢ often p, q are nearly 100 digits each, so n ~= 200 decimal digits (~512 bits)
¢ but 2048-bit keys are becoming a standard requirement nowadays
+ the larger the value of n the harder to factor to infer p and g
¢ but also the slower to process messages
+ a relatively large integer e is chosen
¢ e.g., by choosing e as a prime that is larger than both (p - 1) and (g - 1)
¢ why?
¢ dischosens.t.e-d=1mod (p-1)(q-1)

¢ how?

68

Discussion on RSA

¢ Assumep=5,qg=11,n=5-11=55,¢d(n)=40,e=3,d =27
¢ why encrypting small messages, e.g., M = 2, 3, 4 is tricky?
o recall that the ciphertext is C = M3 mod 55 for M in Zgs

7 8 9 10 11 12 13 14 15 16 17 18

M 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

M 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

69

Discussion on RSA

¢ Assumep=5,qg=11,n=5-11=55,¢d(n)=40,e=3,d =27
¢ why encrypting small messages, e.g.,, M = 2, 3, 4 is tricky?
o recall that the ciphertext is C = M3 mod 55 for M in Zgs
¢ Assume n =20434394384355534343545428943483434356091 =p - q
¢ can e be the number 43432534534345367
¢ Are there problems with applying RSA in practice?
¢ what other algorithms are required to be available to the user?
¢ Are there problem with respect to RSA security?
¢ does it satisfy CPA (advanced) security?

70

Algorithmic issues

The implementation of the RSA cryptosystem requires various algorithms

¢ Main issues

¢ representation of integers of arbitrarily large size; and

¢ arithmetic operations on them, namely computing modular powers

¢ Required algorithms (at setup)

*

*

*

generation of random numbers of a given number of bits (to compute candidates p, q)
primality testing (to check that candidates p, q are prime)
computation of the GCD (to verify that e and ¢(n) are relatively prime)

computation of the multiplicative inverse (to compute d from e)

7zl

Pseudo-primality testing

Testing whether a number is prime (primality testing) is a difficult problem

An integer n > 2 is said to be a base-x pseudo-prime if
¢ x""1modn=1 (Fermat’s little theorem)
¢ Composite base-x pseudo-primes are rare

¢ arandom 100-bit integer is a composite base-2 pseudo-prime
with probability less than 1013
¢ the smallest composite base-2 pseudo-prime is 341
¢ Base-x pseudo-primality testing for an integer n
¢ check whetherx"-1modn=1
¢ can be performed efficiently with the repeated squaring algorithm

72

Security properties

¢ Plain RSA is deterministic

¢ why is this a problem?

¢ Plain RSA is also homomorphic

¢ what does this mean?

¢ multiply ciphertexts to get ciphertext of multiplication!
¢ [(m;).mod N][(m,)¢ mod N] = (m;m,)¢ mod N

¢ however, not additively homomorphic

%3

Real-world usage of RSA

¢ Randomized RSA

¢ to encrypt message M under an RSA public key (e,n), generate a new
random session AES key K, compute the ciphertext as [K® mod n, AES,(M)]

¢ prevents an adversary distinguishing two encryptions of the same M since
K is chosen at random every time encryption takes place

¢ Optimal Asymmetric Encryption Padding (OAEP)

o roughly, to encrypt M, choose random r, encode M as
M’ =[X=M®@® Hy(r), Y=r ® H,(X)] where H, and H, are cryptographic
hash functions, then encrypt it as (M’) e mod n

74

Summary of message-authentication crypto tools

Yes Yes Yes
Crpspian | ore oot e e 150

